Ergebnis der Suche (23)

Ergebnis der Suche nach: (Freitext: GLEICHUNG) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 243 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 14 15 16 17 18 19 20 21 22 23 24 25 Eine Seite vor Zur letzten Seite

Treffer:
221 bis 230
  • Wurzel von komplexen Zahlen ziehen, Beispiel 3 | A.54.06

    Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009757" }

  • Vektorzug, Beispiel 1 | V.10.03

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010672" }

  • DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 4 | A.53.04

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009715" }

  • Rechter Winkel einer Geraden mit A und B | V.08.05

    Eine der Formulierungen der letzten Jahre, die zwar immer gleich lautet, jedoch etwas verunglückt ist (man könnte auch sagen: „beschissen“). Gegeben sind eine Gerade „g“ und zwei Punkte „A“ und „B“, gesucht ist derjenige Punkt der Gerade „von welchem aus die Strecke AB unter einem rechten Winkel erscheint“. Gemeint ist: man sucht einen Punkt G der Gerade g derart, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010627" }

  • Rechter Winkel einer Geraden mit A und B, Beispiel 1 | V.08.05

    Eine der Formulierungen der letzten Jahre, die zwar immer gleich lautet, jedoch etwas verunglückt ist (man könnte auch sagen: „beschissen“). Gegeben sind eine Gerade „g“ und zwei Punkte „A“ und „B“, gesucht ist derjenige Punkt der Gerade „von welchem aus die Strecke AB unter einem rechten Winkel erscheint“. Gemeint ist: man sucht einen Punkt G der Gerade g derart, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010628" }

  • Skalarprodukt Beweise, Beispiel 3 | V.10.04

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010677" }

  • Rechter Winkel einer Geraden mit A und B, Beispiel 2 | V.08.05

    Eine der Formulierungen der letzten Jahre, die zwar immer gleich lautet, jedoch etwas verunglückt ist (man könnte auch sagen: „beschissen“). Gegeben sind eine Gerade „g“ und zwei Punkte „A“ und „B“, gesucht ist derjenige Punkt der Gerade „von welchem aus die Strecke AB unter einem rechten Winkel erscheint“. Gemeint ist: man sucht einen Punkt G der Gerade g derart, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010629" }

  • Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen, Beispiel 1 | M.03.04

    Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte „X“ keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter „A“ und „B“ stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein „X²“ oder so), so dass die Vorgehensweise immer die gleiche ist: ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010187" }

  • Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen, Beispiel 3 | M.03.04

    Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte „X“ keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter „A“ und „B“ stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein „X²“ oder so), so dass die Vorgehensweise immer die gleiche ist: ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010189" }

  • Skalarprodukt Beweise | V.10.04

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010674" }

Seite:
Zur ersten Seite Eine Seite zurück 14 15 16 17 18 19 20 21 22 23 24 25 Eine Seite vor Zur letzten Seite