Ergebnis der Suche (8)

Ergebnis der Suche nach: (Freitext: GLEICHUNG) und (Quelle: "Bildungsmediathek NRW")

Es wurden 810 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 2 3 4 5 6 7 8 9 10 11 12 13 Eine Seite vor Zur letzten Seite

Treffer:
71 bis 80
  • Kubische Gleichung lösen; Cardanische Formel, Beispiel 4 | G.05.02

    Eine „kubische Gleichung“ ist eine Gleichung dritten Grades. Eigentlich gibt es nur eine sinnvolle Möglichkeit, so eine Gleichung zu lösen: Man muss „x“ ausklammern können und danach den Satz vom Nullprodukt anwenden können. Zusätzlich gibt es andere Möglichkeiten, z.B. die Polynomdivision, die aber nur für manche Schularten der Oberstufe wichtig sind und für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010110" }

  • Kubische Gleichung lösen; Cardanische Formel | G.05.02

    Eine „kubische Gleichung“ ist eine Gleichung dritten Grades. Eigentlich gibt es nur eine sinnvolle Möglichkeit, so eine Gleichung zu lösen: Man muss „x“ ausklammern können und danach den Satz vom Nullprodukt anwenden können. Zusätzlich gibt es andere Möglichkeiten, z.B. die Polynomdivision, die aber nur für manche Schularten der Oberstufe wichtig sind und für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010106" }

  • Kubische Gleichung lösen; Cardanische Formel, Beispiel 1 | G.05.02

    Eine „kubische Gleichung“ ist eine Gleichung dritten Grades. Eigentlich gibt es nur eine sinnvolle Möglichkeit, so eine Gleichung zu lösen: Man muss „x“ ausklammern können und danach den Satz vom Nullprodukt anwenden können. Zusätzlich gibt es andere Möglichkeiten, z.B. die Polynomdivision, die aber nur für manche Schularten der Oberstufe wichtig sind und für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010107" }

  • Gauß-Verfahren: Gleichungssysteme mit drei Unbekannten mit dem Gauß Algorithmus lösen | G.02.07

    Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Das bekannteste Lösungsverfahren dazu ist das Gauß-Verfahren. Man verrechnet zuerst die erste und zweite Gleichung so miteinander, dass die erste Unbekannte (ganz links) wegfällt bzw. Null ergibt. Danach verrechnet man erste und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010055" }

  • Mit p-q Formel quadratische Gleichungen lösen, Beispiel 1 | G.04.02

    Die gängigste Art in Europa, quadratische Gleichungen zu lösen, ist die Mitternachtsformel, welche in zwei Varianten auftaucht. Eine der Varianten ist die p-q-Formel. Um die p-q-Formel anzuwenden, sollte die Gleichung in der Form vorliegen: „x²+px+q=0“. Auf der rechten Seite der Gleichung muss also Null stehen, vor dem „x²“ darf nichts stehen (also eine „1“). Steht ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010075" }

  • Kubische Gleichung lösen; Cardanische Formel, Beispiel 2 | G.05.02

    Eine „kubische Gleichung“ ist eine Gleichung dritten Grades. Eigentlich gibt es nur eine sinnvolle Möglichkeit, so eine Gleichung zu lösen: Man muss „x“ ausklammern können und danach den Satz vom Nullprodukt anwenden können. Zusätzlich gibt es andere Möglichkeiten, z.B. die Polynomdivision, die aber nur für manche Schularten der Oberstufe wichtig sind und für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010108" }

  • Gauß-Verfahren: Gleichungssysteme mit drei Unbekannten mit dem Gauß Algorithmus lösen, Beispiel 1

    Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Das bekannteste Lösungsverfahren dazu ist das Gauß-Verfahren. Man verrechnet zuerst die erste und zweite Gleichung so miteinander, dass die erste Unbekannte (ganz links) wegfällt bzw. Null ergibt. Danach verrechnet man erste und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010056" }

  • Mit abc Formel quadratische Gleichungen lösen, Beispiel 2 | G.04.03

    Die gängigste Art in Europa, quadratische Gleichungen zu lösen, ist die Mitternachtsformel, welche in zwei Varianten auftaucht. Eine der Varianten ist die a-b-c-Formel. Um die a-b-c-Formel anzuwenden, sollte die Gleichung in der Form vorliegen: „ax²+bx+c=0“. Auf der rechten Seite der Gleichung muss also Null stehen. Die Zahl vor dem „x²“ heißt a, die Zahl vor dem ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010080" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 1 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009703" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009702" }

Seite:
Zur ersten Seite Eine Seite zurück 2 3 4 5 6 7 8 9 10 11 12 13 Eine Seite vor Zur letzten Seite