Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: PYRAMIDE)

Es wurden 83 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite

Treffer:
11 bis 20
  • Cheops-Pyramide

    Medienwerkstatt - Wissenskarte Die Cheops-Pyramide ist das älteste und das einzige noch erhaltene Weltwunder auf unserem Planeten. Sie wurde ca. 2680 vor Christus für den ägyptischen König Cheops erbaut.

    Details  
    { "Select.HE": "DE:Select.HE:1324151" }

  • Volumen dreiseitige Pyramide berechnen | V.07.03

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das ist ein ziemliches Rumgerechne. Die Grundfläche berechnet sich über A=1/2*g*h. Die Grundlinie berechnet man über Abstand Punkt-Punkt. Die Höhe des Dreiecks berechnet man über Abstand Punkt-Gerade. Die Höhe der Pyramide berechnet man über ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010601" }

  • Senkrechte quadratische Pyramide berechnen, Beispiel 4 | V.07.02

    Eine senkrechte quadratische Pyramide ist eine Pyramide, deren Grundfläche ein Quadrat ist, und deren Spitze genau über dem Mittelpunkt des Quadrats liegt. Die meisten Berechnung sind von der Schwierigkeit her akzeptabel (vor allem wenn die Grundfläche in der x1-x2-Ebene liegt), daher sieht man diese Pyramiden am häufigsten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010600" }

  • Senkrechte quadratische Pyramide berechnen, Beispiel 2 | V.07.02

    Eine senkrechte quadratische Pyramide ist eine Pyramide, deren Grundfläche ein Quadrat ist, und deren Spitze genau über dem Mittelpunkt des Quadrats liegt. Die meisten Berechnung sind von der Schwierigkeit her akzeptabel (vor allem wenn die Grundfläche in der x1-x2-Ebene liegt), daher sieht man diese Pyramiden am häufigsten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010598" }

  • Senkrechte quadratische Pyramide berechnen, Beispiel 3 | V.07.02

    Eine senkrechte quadratische Pyramide ist eine Pyramide, deren Grundfläche ein Quadrat ist, und deren Spitze genau über dem Mittelpunkt des Quadrats liegt. Die meisten Berechnung sind von der Schwierigkeit her akzeptabel (vor allem wenn die Grundfläche in der x1-x2-Ebene liegt), daher sieht man diese Pyramiden am häufigsten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010599" }

  • Senkrechte quadratische Pyramide berechnen | V.07.02

    Eine senkrechte quadratische Pyramide ist eine Pyramide, deren Grundfläche ein Quadrat ist, und deren Spitze genau über dem Mittelpunkt des Quadrats liegt. Die meisten Berechnung sind von der Schwierigkeit her akzeptabel (vor allem wenn die Grundfläche in der x1-x2-Ebene liegt), daher sieht man diese Pyramiden am häufigsten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010596" }

  • Senkrechte quadratische Pyramide berechnen, Beispiel 1 | V.07.02

    Eine senkrechte quadratische Pyramide ist eine Pyramide, deren Grundfläche ein Quadrat ist, und deren Spitze genau über dem Mittelpunkt des Quadrats liegt. Die meisten Berechnung sind von der Schwierigkeit her akzeptabel (vor allem wenn die Grundfläche in der x1-x2-Ebene liegt), daher sieht man diese Pyramiden am häufigsten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010597" }

  • Ägypten - Land am Nil - Ein Pyramiden-Modell

    Zeichenhilfe für eine Pyramide und Bastelbogen für die Cheops-Pyramide im Modell.

    Details  
    { "MELT": "DE:SODIS:MELT-04602320.15" }

  • Pyramide (Mathematik)

    Eine Pyramide ist ein Körper, der durch Verbinden aller Ecken eines beliebigen Vielecks mit einem Punkt außerhalb der Ebene, in der das Vieleck liegt, entsteht.

    Details  
    { "DBS": "DE:DBS:55988" }

  • Ägypten - Land am Nil - Querschnitt durch eine Pyramide

    Eine Pyramide ist in ihrem Aufbau schematisch dargestellt. Diese Zeichnung soll beschriftet werden, die Aufgaben einer Pyramide erläutert werden.

    Details  
    { "MELT": "DE:SODIS:MELT-04602320.16" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite