Ergebnis der Suche (15)

Ergebnis der Suche nach: (Freitext: TRIGONOMETRIE)

Es wurden 200 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 9 10 11 12 13 14 15 16 17 18 19 20 Eine Seite vor Zur letzten Seite

Treffer:
141 bis 150
  • Trigonometrische Umkehrfunktionen

    Die Funktionen Arkussinus, Arkuskosinus und Arkustangens sind die Umkehrfunktionen der trigonometrischen Funktionen Sinus, Kosinus und Tangens, d.h. sie ordnen einem Verhältnis einen Winkel zu.

    Details  
    { "DBS": "DE:DBS:56108" }

  • Satz des Pythagoras und wie man richtig damit rechnet, Beispiel 2 | T.02.01

    Der Satz des Pythagoras (auch Hypothenusensatz)ist einer der bekanntesten Sätze der Mathematik. Die Aussage ist, dass das Quadrat der Hypotenuse gleich ist der Summe der Kathetenquadrate ist. (a²+b²=c²). Die Hypotenuse (=c) liegt dabei gegenüber des rechten Winkels. Die anderen beiden Seiten sind die Katheten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010313" }

  • Winkelsumme im Dreieck, Winkelsumme im Viereck | T.01.02

    In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010283" }

  • Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche | T.06.09

    Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010331" }

  • Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 3 | T.06.02

    Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010318" }

  • Mathe-Song Sinussatz

    In diesem Mathe-Song von Dorfuchs wird der Sinussatz und seine Herleitung gesungen. Die Schülerinnen und Schüler können nachsingen und sich sowohl den Sinussatz als auch dessen Herleitung gut einprägen.

    Details  
    { "HE": [] }

  • Aus dem Schaubild einer trigonometrischen Funktion die Funktionsgleichung erstellen, Beispiel 1

    Es gibt einen Haufen periodischer Vorgänge in der Natur. Z.B. sieht man öfter die Aufgabe, dass monatliche Durchschnittstemperaturen angeben sind, diese werden als Punkte eingezeichnet und die Funktion kann eingezeichnet werden. Nun braucht man die Funktionsgleichung, die die Temperatur beschreibt. Wie geht man vor? Die waagerechte Mittellinie d liest man zuerst aus. Der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009493" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d, Beispiel 1 | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009486" }

  • Aus dem Schaubild einer trigonometrischen Funktion die Funktionsgleichung erstellen, Beispiel 3

    Es gibt einen Haufen periodischer Vorgänge in der Natur. Z.B. sieht man öfter die Aufgabe, dass monatliche Durchschnittstemperaturen angeben sind, diese werden als Punkte eingezeichnet und die Funktion kann eingezeichnet werden. Nun braucht man die Funktionsgleichung, die die Temperatur beschreibt. Wie geht man vor? Die waagerechte Mittellinie d liest man zuerst aus. Der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009495" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d, Beispiel 2 | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009487" }

Seite:
Zur ersten Seite Eine Seite zurück 9 10 11 12 13 14 15 16 17 18 19 20 Eine Seite vor Zur letzten Seite