Ergebnis der Suche (12)

Ergebnis der Suche nach: (Freitext: ZAHL)

Es wurden 715 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • Schriftliche Addition

    Sowohl das anschauliche Addieren mit Hilfe einer Zahlengeraden als auch die Addition durch Auswendiglernen (zum Beispiel mit der Merktabelle) stoßen schnell an ihre Grenzen. Für größere Zahlen benutzt man daher die Methode der schriftlichen Addition.

    Details  
    { "DBS": "DE:DBS:56250" }

  • Addition (Mathematik)

    Die Addition, umgangssprachlich auch Plus-Rechnen genannt, ist eine der vier Grundrechenarten. In der Grundschule und in der Umgangssprache verwendet man meist den Ausdruck Zusammenzählen für die Addition von zwei oder mehr Zahlen, da Addition den Vorgang des Zählens beschreibt.

    Details  
    { "DBS": "DE:DBS:55921" }

  • Integrieren von komplizierten Exponentialfunktionen, Beispiel 2 | A.41.06

    Braucht man die Stammfunktion von besonders hässliche Exponentialgleichungen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009423" }

  • Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen, Beispiel 1 | A.54.07

    In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009760" }

  • Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 3 | A.41.02

    Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009399" }

  • Kopfrechnen: schriftliche Multiplikation | B.08.04

    Bei der schriftlichen Multiplikation ignoriert man erst einmal jedes Komma (sofern vorhanden). Dann multipliziert man die erste Zahl mit jeder Ziffer der zweiten Zahl. Die Zwischenergebnisse werden übereinander geschrieben, jedoch um eine Stelle versetzt. Zum Schluss werden die Zwischenergebnisse zusammengezählt. Blöd zum Erklären, relativ einfach ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009936" }

  • Komplizierte Exponentialfunktionen ableiten | A.41.04

    Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009410" }

  • Kopfrechnen: schriftliche Multiplikation, Beispiel 2 | B.08.04

    Bei der schriftlichen Multiplikation ignoriert man erst einmal jedes Komma (sofern vorhanden). Dann multipliziert man die erste Zahl mit jeder Ziffer der zweiten Zahl. Die Zwischenergebnisse werden übereinander geschrieben, jedoch um eine Stelle versetzt. Zum Schluss werden die Zwischenergebnisse zusammengezählt. Blöd zum Erklären, relativ einfach ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009938" }

  • Exponentialfunktion: Ableitung, Beispiel 6 | A.41.03

    Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art „innere Ableitung“ ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009409" }

  • Exponentialfunktion: Ableitung, Beispiel 5 | A.41.03

    Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art „innere Ableitung“ ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009408" }

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite