Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: VERFAHREN) und (Quelle: "Bildungsmediathek NRW")

Es wurden 133 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Gauß-Verfahren: Lineares Gleichungssystem lösen | M.02

    Das gängigste Lösungsverfahren für ein Lineares Gleichungssystem ist das Gauß-Verfahren. Dafür stellt man sich die Diagonale des LGS vor und multipliziert und verrechnet nun die Gleichungen derart, dass man unter der Diagonalen nur noch Nullen hat. Nun kann man die Lösungen von „x1“, „x2“, „x3“, .. bestimmen, welche zusammen den Lösungsvektor ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010137" }

  • LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 3 | M.02.01

    Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010141" }

  • LGS lösen: eindeutige Lösung mit Gauß-Verfahren | M.02.01

    Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010138" }

  • LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 4 | M.02.01

    Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010142" }

  • LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 1 | M.02.01

    Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010139" }

  • LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 2 | M.02.01

    Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010140" }

  • Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 4 | M.02.04

    Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010153" }

  • Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 1 | M.02.04

    Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010150" }

  • Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 2 | M.02.04

    Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010151" }

  • Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 3 | M.02.04

    Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010152" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite