Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: GLEICHUNG)

Es wurden 566 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
31 bis 40
  • Matrizen und Lineares Gleichungssystem lösen: wie bestimmt man eine Unbekannte? | M.01.02

    Das gängigste Lösungsverfahren für ein Lineares Gleichungssystem ist das Gauß-Verfahren. Dafür stellt man sich die Diagonale des LGS vor und multipliziert und verrechnet nun die Gleichungen derart, dass man unter der Diagonalen nur noch Nullen hat. Hat man drei Gleichungen gegeben, ist die Vorgehensweise folgende: Zuerst verrechnet man erste und zweite Gleichung, um ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010136" }

  • Einsatzverfahren: so löst man Gleichungen mit zwei Unbekannten, Beispiel 1 | G.02.02

    Hat man zwei Gleichungen mit zwei Unbekannten gegeben, so spricht man von einem „Linearen Gleichungssystem“ bzw. von einem 2x2 – LGS. Die Lösung über das sogenannte „Einsetzverfahren“ (oder auch „Substitutionsverfahren“) läuft folgender Maßen: Man sucht sich eine beliebige Variable von einer beliebigen Gleichung aus, z.B. „y“ aus der ersten Gleichung. Nun setzt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010040" }

  • Einsetzungsverfahren

    Das Einsetzungsverfahren ist eine Methode zum Lösen von Gleichungssystemen. Ist eine der Gleichungen nach einer Variablen x aufgelöst, setzt man den Term auf der anderen Seite bei allen anderen Gleichungen für x ein.

    Details  
    { "Serlo": "DE:DBS:56041" }

  • Einsatzverfahren: so löst man Gleichungen mit zwei Unbekannten, Beispiel 2 | G.02.02

    Hat man zwei Gleichungen mit zwei Unbekannten gegeben, so spricht man von einem „Linearen Gleichungssystem“ bzw. von einem 2x2 – LGS. Die Lösung über das sogenannte „Einsetzverfahren“ (oder auch „Substitutionsverfahren“) läuft folgender Maßen: Man sucht sich eine beliebige Variable von einer beliebigen Gleichung aus, z.B. „y“ aus der ersten Gleichung. Nun setzt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010041" }

  • Multiple Choice Test Funktionen


    Details  
    { "SN": "DE:SBS:143" }

  • Einsatzverfahren: so löst man Gleichungen mit zwei Unbekannten | G.02.02

    Hat man zwei Gleichungen mit zwei Unbekannten gegeben, so spricht man von einem „Linearen Gleichungssystem“ bzw. von einem 2x2 – LGS. Die Lösung über das sogenannte „Einsetzverfahren“ (oder auch „Substitutionsverfahren“) läuft folgender Maßen: Man sucht sich eine beliebige Variable von einer beliebigen Gleichung aus, z.B. „y“ aus der ersten Gleichung. Nun setzt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010039" }

  • Additionsverfahren (Mathematik)

    Das Additionsverfahren ist eine Methode zum Lösen von Gleichungssystemen die eine Lösung haben. Um ein Gleichungssystem mit dem Additionsverfahren zu lösen, werden zwei Gleichungen (bzw. deren Vielfache) so addiert, dass eine Variable wegfällt.

    Details  
    { "Serlo": "DE:DBS:56004" }

  • Parabel: so kann man Parabeln berechnen | A.04

    Unter einer Parabel versteht man üblicherweise eine quadratische Parabel, eine Funktion der Form: y=Zahl*x²+Zahl*x+Zahl bzw. y=ax²+bx+c. Parabeln sind neben den Geraden die einfachsten Funktionen und daher recht wichtig. Viele Grundlagenrechnungen von Funktionen werden hier erstmalig angewendet. (Zeichnen von Funktionen, Berechnung von Nullstellen, Verschieben, ). Beginnt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008457" }

  • Lineare Gleichungen mit Parameter lösen | G.03.02

    Steckt in einer linearen Gleichung nicht nur eine Variable (meist „x“), sondern auch ein Parameter („t“ oder „k“ oder ), so sieht das zwar etwas hässlich aus, aber das Prinzip ist genau gleich wie bei den Gleichungen ohne Parameter. Falls Klammern auftauchen, löst man diese auf. Danach bringt man alles mit „x“ auf eine Seite der Gleichung, alles was kein „x“ hat, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010065" }

  • Gleichungen (Mathematik)

    Eine Gleichung ist ein Ausdruck, der behauptet, dass zwei Terme den selben Wert haben. Dabei können beide Terme von Variablen abhängen. In diesem Fall hängt der Wahrheitswert der Gleichung von den Werten der Variablen ab.

    Details  
    { "Serlo": "DE:DBS:56032" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite