Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: GLEICHUNG)

Es wurden 566 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
61 bis 70
  • Mit abc Formel quadratische Gleichungen lösen, Beispiel 1 | G.04.03

    Die gängigste Art in Europa, quadratische Gleichungen zu lösen, ist die Mitternachtsformel, welche in zwei Varianten auftaucht. Eine der Varianten ist die a-b-c-Formel. Um die a-b-c-Formel anzuwenden, sollte die Gleichung in der Form vorliegen: „ax²+bx+c=0“. Auf der rechten Seite der Gleichung muss also Null stehen. Die Zahl vor dem „x²“ heißt a, die Zahl vor dem ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010079" }

  • Mit abc Formel quadratische Gleichungen lösen | G.04.03

    Die gängigste Art in Europa, quadratische Gleichungen zu lösen, ist die Mitternachtsformel, welche in zwei Varianten auftaucht. Eine der Varianten ist die a-b-c-Formel. Um die a-b-c-Formel anzuwenden, sollte die Gleichung in der Form vorliegen: „ax²+bx+c=0“. Auf der rechten Seite der Gleichung muss also Null stehen. Die Zahl vor dem „x²“ heißt a, die Zahl vor dem ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010078" }

  • Mit abc Formel quadratische Gleichungen lösen, Beispiel 2 | G.04.03

    Die gängigste Art in Europa, quadratische Gleichungen zu lösen, ist die Mitternachtsformel, welche in zwei Varianten auftaucht. Eine der Varianten ist die a-b-c-Formel. Um die a-b-c-Formel anzuwenden, sollte die Gleichung in der Form vorliegen: „ax²+bx+c=0“. Auf der rechten Seite der Gleichung muss also Null stehen. Die Zahl vor dem „x²“ heißt a, die Zahl vor dem ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010080" }

  • Gleichungen auf Normalform bringen, Beispiel 9 | A.12.01

    Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008670" }

  • Logarithmusfunktion: Gleichungen lösen, Beispiel 3 | A.44.05

    Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch „x“ oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009557" }

  • Logarithmusfunktion: Gleichungen lösen, Beispiel 4 | A.44.05

    Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch „x“ oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009558" }

  • Mit Linearfaktoren quadratische Gleichungen lösen, Beispiel 2 | G.04.01

    Wenn man Glück hat, ist die quadratische Gleichung als „Linearfaktorform“ gegeben (Abkürzung „LF“ oder „LFF“). Eine Linearfaktorform liegt vor, wenn man (normalerweise) zwei Klammern hat, die mit „Mal“ verbunden sind, in jeder Klammer nur „x“ steht (ohne Quadrat) und außerhalb der Klammern kein Plus oder Minus auftaucht. Die einzelnen Klammern heißen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010072" }

  • Mitternachtsformel, a-b-c-Formel, Beispiel 1 | A.12.04

    Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer „=0“ stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008695" }

  • Matrizen und Lineares Gleichungssystem: Grundbegriffe wie Dreiecksmatrix, Diagonalmatrix | M.01.01

    Es gibt mehrere Systeme nach denen man gehen kann, um die Unbekannten einer Matrix (bzw. eines LGS) zu bestimmen. Das bekannteste davon ist das „Gauß-Verfahren“ (auch „Gauß-Verfahren“). Hat man drei gegebene Gleichungen, ist die Vorgehensweise folgende: Zuerst verrechnet man erste und zweite Gleichung, um „x1“ wegfallen zu lassen. Dann verrechnet man erste und dritte ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010135" }

  • Mitternachtsformel, a-b-c-Formel, Beispiel 4 | A.12.04

    Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer „=0“ stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008698" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite