Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: GLEICHUNG)

Es wurden 566 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Logarithmusfunktion: Gleichungen lösen, Beispiel 2 | A.44.05

    Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch „x“ oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009556" }

  • Diskriminante (Mathematik)

    An der Diskriminante kann man ablesen, wie viele Lösungen die quadratische Gleichung besitzt

    Details  
    { "Serlo": "DE:DBS:55930" }

  • Gleichungen auf Normalform bringen, Beispiel 2 | A.12.01

    Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008663" }

  • Mitternachtsformel, a-b-c-Formel, Beispiel 6 | A.12.04

    Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer „=0“ stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008700" }

  • Mitternachtsformel, a-b-c-Formel | A.12.04

    Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer „=0“ stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008694" }

  • Mitternachtsformel, a-b-c-Formel, Beispiel 11 | A.12.04

    Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer „=0“ stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008705" }

  • Bruchgleichung

    Als Bruchgleichung bezeichnet man eine Gleichung, bei der die gesuchte Variable mindestens einmal im Nenner vorkommt.

    Details  
    { "Serlo": "DE:DBS:56099" }

  • Mitternachtsformel, a-b-c-Formel, Beispiel 8 | A.12.04

    Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer „=0“ stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008702" }

  • Gleichungen auf Normalform bringen, Beispiel 6 | A.12.01

    Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008667" }

  • Mit Linearfaktoren quadratische Gleichungen lösen, Beispiel 3 | G.04.01

    Wenn man Glück hat, ist die quadratische Gleichung als „Linearfaktorform“ gegeben (Abkürzung „LF“ oder „LFF“). Eine Linearfaktorform liegt vor, wenn man (normalerweise) zwei Klammern hat, die mit „Mal“ verbunden sind, in jeder Klammer nur „x“ steht (ohne Quadrat) und außerhalb der Klammern kein Plus oder Minus auftaucht. Die einzelnen Klammern heißen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010073" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite