Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: STEREOMETRIE)

Es wurden 73 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • Quadratische Pyramide berechnen, Beispiel 2 | T.06.04

    Ein quadratische Pyramide hat als Grundfläche natürlich ein Quadrat und oben ist eine Spitze (wie bei jeder Pyramide und bei jedem Spitzkörper). Liegt die Spitze genau über der Grundfläche, redet man von einer senkrechten quadratischen Pyramide. Diese gehört zu den Körper, denen Sie am häufigsten in Aufgaben begegnen werden. V=1/3*a²*h

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010325" }

  • Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 2 | T.06.09

    Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010333" }

  • Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale | T.06.02

    Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010315" }

  • Quadratische Pyramide berechnen, Beispiel 1 | T.06.04

    Ein quadratische Pyramide hat als Grundfläche natürlich ein Quadrat und oben ist eine Spitze (wie bei jeder Pyramide und bei jedem Spitzkörper). Liegt die Spitze genau über der Grundfläche, redet man von einer senkrechten quadratischen Pyramide. Diese gehört zu den Körper, denen Sie am häufigsten in Aufgaben begegnen werden. V=1/3*a²*h

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010324" }

  • Quadratische Pyramide berechnen, Beispiel 3 | T.06.04

    Ein quadratische Pyramide hat als Grundfläche natürlich ein Quadrat und oben ist eine Spitze (wie bei jeder Pyramide und bei jedem Spitzkörper). Liegt die Spitze genau über der Grundfläche, redet man von einer senkrechten quadratischen Pyramide. Diese gehört zu den Körper, denen Sie am häufigsten in Aufgaben begegnen werden. V=1/3*a²*h

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010326" }

  • Kugel berechnen: Kugelvolumen, Kugeloberfläche, Halbkugel; Beispiel 2 | T.06.07

    Kugeln sind rund, gehören also zu den Rundkörpern. Das ist toll! Kugeln sind von der Struktur her, recht einfach. Volumen und Oberfläche berechnet mit je einer Formel, in welche nur der Radius einfließt. Um die Aufgaben etwas anspruchsvoller zu gestalten, hat man es daher oft mit Halbkugeln zu tun oder irgendwelchen Aufgaben, bei denen man um die Ecke denken ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010329" }

  • Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 1 | T.06.02

    Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010316" }

  • Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen | T.06.10

    Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010335" }

  • Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 3 | T.06.03

    Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010322" }

  • Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 1 | T.06.03

    Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010320" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite