Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: STEREOMETRIE)

Es wurden 73 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 2 | T.01.02

    In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010285" }

  • Winkelberechnung mit den Winkelfunktionen Sinus, Cosinus und Tangens; Beispiel 3 | T.01.01

    Ein wichtiger Bestandteil der Trigonometrie ist die Winkelberechnung. Es gibt verschiedenste Zusammenhänge zwischen Winkeln, zwischen Winkeln und den Seitenlängen im Dreieck, Viereck, und (fast) alle wollen wir hier sehen!!! Die Berechnungen funktionieren mit Hilfe der Winkelfunktionen: Sinus, Kosinus und Tangens.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010282" }

  • Winkelsumme im Dreieck, Winkelsumme im Viereck | T.01.02

    In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010283" }

  • Winkelberechnung mit den Winkelfunktionen Sinus, Cosinus und Tangens; Beispiel 1 | T.01.01

    Ein wichtiger Bestandteil der Trigonometrie ist die Winkelberechnung. Es gibt verschiedenste Zusammenhänge zwischen Winkeln, zwischen Winkeln und den Seitenlängen im Dreieck, Viereck, und (fast) alle wollen wir hier sehen!!! Die Berechnungen funktionieren mit Hilfe der Winkelfunktionen: Sinus, Kosinus und Tangens.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010280" }

  • Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 3 | T.01.02

    In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010286" }

  • Winkelberechnung mit den Winkelfunktionen Sinus, Cosinus und Tangens | T.01.01

    Ein wichtiger Bestandteil der Trigonometrie ist die Winkelberechnung. Es gibt verschiedenste Zusammenhänge zwischen Winkeln, zwischen Winkeln und den Seitenlängen im Dreieck, Viereck, und (fast) alle wollen wir hier sehen!!! Die Berechnungen funktionieren mit Hilfe der Winkelfunktionen: Sinus, Kosinus und Tangens.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010279" }

  • Satz des Pythagoras und wie man richtig damit rechnet | T.02.01

    Der Satz des Pythagoras (auch Hypothenusensatz)ist einer der bekanntesten Sätze der Mathematik. Die Aussage ist, dass das Quadrat der Hypotenuse gleich ist der Summe der Kathetenquadrate ist. (a²+b²=c²). Die Hypotenuse (=c) liegt dabei gegenüber des rechten Winkels. Die anderen beiden Seiten sind die Katheten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010311" }

  • Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 1 | T.01.02

    In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010284" }

  • Satz des Pythagoras und wie man richtig damit rechnet, Beispiel 1 | T.02.01

    Der Satz des Pythagoras (auch Hypothenusensatz)ist einer der bekanntesten Sätze der Mathematik. Die Aussage ist, dass das Quadrat der Hypotenuse gleich ist der Summe der Kathetenquadrate ist. (a²+b²=c²). Die Hypotenuse (=c) liegt dabei gegenüber des rechten Winkels. Die anderen beiden Seiten sind die Katheten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010312" }

  • Satz des Pythagoras und wie man richtig damit rechnet, Beispiel 2 | T.02.01

    Der Satz des Pythagoras (auch Hypothenusensatz)ist einer der bekanntesten Sätze der Mathematik. Die Aussage ist, dass das Quadrat der Hypotenuse gleich ist der Summe der Kathetenquadrate ist. (a²+b²=c²). Die Hypotenuse (=c) liegt dabei gegenüber des rechten Winkels. Die anderen beiden Seiten sind die Katheten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010313" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite