Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: TRIGONOMETRIE)

Es wurden 237 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Einfache trigonometrische Gleichungen lösen | A.42.02

    Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in „Ding“ sollte ein „x“ drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach „Ding“ auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009456" }

  • Trigonometrische Umkehrfunktionen

    Die Funktionen Arkussinus, Arkuskosinus und Arkustangens sind die Umkehrfunktionen der trigonometrischen Funktionen Sinus, Kosinus und Tangens, d.h. sie ordnen einem Verhältnis einen Winkel zu.

    Details  
    { "Serlo": "DE:DBS:56108" }

  • Periode von trigonometrischen Funktionen berechnen, Beispiel 1 | A.42.01

    Normalerweise wiederholen sich trigonometrische Funktionen innerhalb einer Periode. Die Periode einer Sinus- oder Kosinus-Funktion liegt bei 2*Pi (Pi=3,1415...), die der Tangens-Funktion bei Pi. Allgemein hat eine Funktion der Form f(x)=a*sin(b(x-c))+d oder g(x)=a*cos(b(x-c))+d die Periode von Per=2*Pi/b. Bei komplizierteren Funktionen kann die Periode teilweise nicht mehr so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009453" }

  • Schaubild einer trigonometrischen Funktion erstellen, Beispiel 1 | A.42.09

    Man beginnt mit der Mittellinie d und der Amplitude a. Mit deren Hilfe weiß man nun in welchem Bereich sich die Funktion bewegt (wie weit die Funktion hoch und wie weit sie runter geht). Es geht weiter mit c, womit man weiß, wo die Funktion „beginnt“. Als Letztes bestimmt man die Periode mit Hilfe von b. Nun kann man Hoch- und Tief- und die Wendepunkte bestimmen und damit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009489" }

  • Matheaufgaben aus der Arbeitswelt - Trigonometrie (Gleitlagerbuchse)

    Die Arbeitsblätter sind für die Sekundarstufe I konzipiert. Zum Teil werden Grundlagen geübt, zum Teil müssen mehrere wichtige Formeln verknüpft werden – eine praxistypische Mischung verschiedener Berechnungen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00017704" }

  • Trigonometrische Funktionen integrieren bzw. aufleiten, Beispiel 2 | A.42.06

    Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009478" }

  • Eigenschaften der trigonometrischen Funktionen

    Die mathematischen Zusammenhänge werden durch dynamische GeoGebra-Arbeitsblätter erarbeitet (Klasse 10).; Lernressourcentyp: Unterrichtsplanung; Lernmaterial; Arbeitsblatt (interaktiv); Mindestalter: 10; Höchstalter: 14

    Details  
    { "DBS": "DE:DBS:52683", "LO": "DE:SODIS:de.lehrer-online.408030" }

  • Matheaufgaben aus der Arbeitswelt - Trigonometrie (Adapterplatte)

    Die Arbeitsblätter sind für die Sekundarstufe I konzipiert. Zum Teil werden Grundlagen geübt, zum Teil müssen mehrere wichtige Formeln verknüpft werden – eine praxistypische Mischung verschiedener Berechnungen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00017707" }

  • Trigonometrische Funktionen integrieren bzw. aufleiten, Beispiel 3 | A.42.06

    Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009479" }

  • Trigonometrische Funktionen integrieren bzw. aufleiten | A.42.06

    Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009476" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite