Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: KREIS) und (Schlagwörter: MITTELPUNKT)

Es wurden 20 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Kreisgleichung, Beispiel 3 | V.06.01

    Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei „m1“ und „m2“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010526" }

  • Kreisgleichung | V.06.01

    Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei „m1“ und „m2“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010523" }

  • Kreisgleichung, Beispiel 1 | V.06.01

    Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei „m1“ und „m2“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010524" }

  • Kreisgleichung, Beispiel 2 | V.06.01

    Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei „m1“ und „m2“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010525" }

  • Kugel berechnen mit der Kugelgleichung | V.06.07

    Eine Kugel hat die Gleichung (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2, wobei „m1“, „m2“ und „m3“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1, x2 und x3 kann man selbstverständlich auch x, y und z schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kugelgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010547" }

  • Kugel berechnen mit der Kugelgleichung, Beispiel 3 | V.06.07

    Eine Kugel hat die Gleichung (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2, wobei „m1“, „m2“ und „m3“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1, x2 und x3 kann man selbstverständlich auch x, y und z schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kugelgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010550" }

  • Kugel berechnen mit der Kugelgleichung, Beispiel 1 | V.06.07

    Eine Kugel hat die Gleichung (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2, wobei „m1“, „m2“ und „m3“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1, x2 und x3 kann man selbstverständlich auch x, y und z schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kugelgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010548" }

  • Kugel berechnen mit der Kugelgleichung, Beispiel 2 | V.06.07

    Eine Kugel hat die Gleichung (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2, wobei „m1“, „m2“ und „m3“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1, x2 und x3 kann man selbstverständlich auch x, y und z schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kugelgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010549" }

  • DynaGeo: Inversion einer Parabel am Kreis

    Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00002868" }

  • DynaGeo: Lage des Umkreismittelpunkts bei Dreiecken

    Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00002880" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite