Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: TRIGONOMETRIE) und (Schlagwörter: E-LEARNING) ) und (Schlagwörter: ABLEITUNG)

Es wurden 18 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Trigonometrische Funktionen: Ableitung, Beispiel 2 | A.42.04

    Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009469" }

  • Trigonometrische Funktionen: Ableitung | A.42.04

    Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009467" }

  • Trigonometrische Funktionen: Ableitung, Beispiel 1 | A.42.04

    Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009468" }

  • Komplizierte trigonometrische Funktion ableiten | A.42.05

    Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wird’s manchmal etwas hässlicher.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009471" }

  • Komplizierte trigonometrische Funktion ableiten, Beispiel 1 | A.42.05

    Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wird’s manchmal etwas hässlicher.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009472" }

  • Komplizierte trigonometrische Funktion ableiten, Beispiel 4 | A.42.05

    Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wird’s manchmal etwas hässlicher.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009475" }

  • Komplizierte trigonometrische Funktion ableiten, Beispiel 3 | A.42.05

    Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wird’s manchmal etwas hässlicher.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009474" }

  • Trigonometrische Funktionen: Ableitung, Beispiel 3 | A.42.04

    Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009470" }

  • Komplizierte trigonometrische Funktion ableiten, Beispiel 2 | A.42.05

    Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wird’s manchmal etwas hässlicher.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009473" }

  • Trigonometrische Funktionen integrieren bzw. aufleiten | A.42.06

    Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009476" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite