Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: VOLUMEN) und (Quelle: "learn:line NRW")

Es wurden 80 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Volumen dreiseitige Pyramide berechnen | V.07.03

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das ist ein ziemliches Rumgerechne. Die Grundfläche berechnet sich über A=1/2*g*h. Die Grundlinie berechnet man über Abstand Punkt-Punkt. Die Höhe des Dreiecks berechnet man über Abstand Punkt-Gerade. Die Höhe der Pyramide berechnet man über ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010601" }

  • Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 2 | A.21.02

    Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009036" }

  • Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 1 | A.21.02

    Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009035" }

  • Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 4 | A.21.02

    Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009038" }

  • Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 6 | A.21.02

    Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009040" }

  • Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 3 | A.21.02

    Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009037" }

  • Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel | A.21.02

    Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009034" }

  • Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 5 | A.21.02

    Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009039" }

  • Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 3 | T.06.02

    Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010318" }

  • Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 2 | T.06.02

    Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010317" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite