Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: VOLUMEN) und (Schlagwörter: VOLUMEN) ) und (Quelle: "learn:line NRW")

Es wurden 46 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 3 | T.06.02

    Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010318" }

  • Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 2 | T.06.02

    Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010317" }

  • Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale | T.06.02

    Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010315" }

  • Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 1 | T.06.02

    Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010316" }

  • Volumen dreiseitige Pyramide berechnen über Kreuzprodukt, Beispiel 2 | V.07.04

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt „Spatprodukt“. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010607" }

  • Volumen dreiseitige Pyramide berechnen über Kreuzprodukt, Beispiel 3 | V.07.04

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt „Spatprodukt“. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010608" }

  • Volumen dreiseitige Pyramide berechnen über Kreuzprodukt, Beispiel 1 | V.07.04

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt „Spatprodukt“. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010606" }

  • Volumen dreiseitige Pyramide berechnen über Kreuzprodukt | V.07.04

    Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt „Spatprodukt“. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010605" }

  • Zersetzung von Wasserstoffperoxid

    Der Bereich "Didaktik der Chemie" der Universität Bayreuth hält auf seinen Webseite eine Menge an Unterrichtsmaterialien und Versuchsbeschreibungen für viele Themen bereit.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00001223" }

  • Rotationsvolumen einer Funktion über Umkehrfunktion berechnen; Rotation um y-Achse, Beispiel 1

    Benötigt man das Rotationsvolumen einer Funktion um die y-Achse, so lässt man die Umkehrfunktion um die x-Achse rotieren. Im Detail: Man benötigt das Volumen, das durch die Rotation um die y-Achse von einer Fläche entsteht. Zuerst bestimmt man die Umkehrfunktion von f(x) und lässt diese Umkehrfunktion nun „ganz normal“ um die x-Achse rotieren. Die Grenzen sind hierbei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009266" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite