Ergebnis der Suche
Ergebnis der Suche nach: (Freitext: WINKELHALBIERENDE)
Es wurden 23 Einträge gefunden
- Treffer:
- 1 bis 10
-
Winkelhalbierende (Mathematik)
Die Winkelhalbierende eines Winkels ist ein Strahl, der im Scheitelpunkt eines Winkels entspringt und den Winkel in zwei gleiche Teile teilt.
Details { "DBS": "DE:DBS:55943" }
-
Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 2 | A.02.21
Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008433" }
-
Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele | A.02.21
Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008431" }
-
Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 3 | A.02.21
Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008434" }
-
Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 1 | A.02.21
Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008432" }
-
Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 4 | A.02.21
Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008435" }
-
DynaGeo: Dreieckskonstruktion
Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00002873" }
-
Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion | A.28.02
Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009239" }
-
DynaGeo: "Umkehrungen" der trigonometrischen Funktion
Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00002962" }
-
DynaGeo: Knobelaufgabe: Halbierter Rechter
Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00002890" }