Ergebnis der Suche

Ergebnis der Suche nach: ( ( (Freitext: D-BRANDENBURG) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Systematikpfad: MATHEMATIK)

Es wurden 35 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Den vierten Punkt eines Parallelogramms berechnen | V.05.04

    Eine typische Frage ist, den vierten Punkt eines Parallelogramms zu berechnen. Das ist einfach. Annahme, man muss D berechnen. Man addiert den Vektor BC zum Punkt A und erhält D. (Das Ganze klappt natürlich auch beim Rechteck, Quadrat oder bei einer Raute, weil alle diese besondere Parallelogramme sind).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010505" }

  • Den vierten Punkt eines Parallelogramms berechnen, Beispiel 3 | V.05.04

    Eine typische Frage ist, den vierten Punkt eines Parallelogramms zu berechnen. Das ist einfach. Annahme, man muss D berechnen. Man addiert den Vektor BC zum Punkt A und erhält D. (Das Ganze klappt natürlich auch beim Rechteck, Quadrat oder bei einer Raute, weil alle diese besondere Parallelogramme sind).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010508" }

  • Den vierten Punkt eines Parallelogramms berechnen, Beispiel 2 | V.05.04

    Eine typische Frage ist, den vierten Punkt eines Parallelogramms zu berechnen. Das ist einfach. Annahme, man muss D berechnen. Man addiert den Vektor BC zum Punkt A und erhält D. (Das Ganze klappt natürlich auch beim Rechteck, Quadrat oder bei einer Raute, weil alle diese besondere Parallelogramme sind).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010507" }

  • Den vierten Punkt eines Parallelogramms berechnen, Beispiel 1 | V.05.04

    Eine typische Frage ist, den vierten Punkt eines Parallelogramms zu berechnen. Das ist einfach. Annahme, man muss D berechnen. Man addiert den Vektor BC zum Punkt A und erhält D. (Das Ganze klappt natürlich auch beim Rechteck, Quadrat oder bei einer Raute, weil alle diese besondere Parallelogramme sind).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010506" }

  • Bernoulli-Kette (Mathematik)

    Wird ein Bernoulli-Experiment (d. h. ein Experiment mit nur zwei möglichen Ergebnissen) n-mal voneinander unabhängig wiederholt, so spricht man von einer Bernoulli-Kette der Länge n.

    Details  
    { "DBS": "DE:DBS:56181" }

  • Chaos und Fraktale

    Dies ist ein ausführliches Informationssystem zum Thema Chaos und Fraktale mit Grunderklärungen, Tipps für den Unterricht, Arbeitsblättern, freier Software, Programmiertipps in Logo, Pascal. Vorgestellt werden: Feigenbaum, Mandelbrotmenge, dynamische Systeme, Lindenmayer-System, Wegfraktale, Sierpinski-Dreieck, Dimension , IFS-Fraktale.

    Details  
    { "DBS": "DE:DBS:2052" }

  • Leontief: komplexe Aufgabe mit Parameter, Produktionsvektor und Marktvektor, Teil d | M.06.04

    Eine Leontief–Aufgabe, die einfach beginnt und komplex endet. Zuerst bestimmen wir die Input-Matrix. Danach berechnen wir aus einem Marktvektor den Produktionsvektor. In Teilaufgabe 3 haben wir viele verschiedene Angaben, mit Unbekannten an verschiedensten Stellen, woraus wir ein LGS aufstellen und dann Produktions- und Marktvektor berechnen. In der letzten Teilaufgabe haben ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010236" }

  • Leontief: schwierige Aufgabe mit Gozintograph und Input-Matrix, Teil d | M.06.03

    Eine Leontief–Aufgabe, die einfach beginnt und komplex endet. Zuerst haben wir eine Grafik (die „Gozintograph“ heißt). Daraus erstellen wir eine Input-Output-Tabelle, aus welcher wir wiederum die Input-Matrix berechnen. Danach berechnen wir aus einem Marktvektor den Produktionsvektor. In Teilaufgabe 3 haben wir viele verschiedene Angaben, aus denen wir dann Kosten und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010231" }

  • Vektorzug, Beispiel 1 | V.10.03

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010672" }

  • Teilverhältnis, Beispiel 1 | V.10.02

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010667" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite