Ergebnis der Suche

Ergebnis der Suche nach: ( ( (Freitext: FUNKTION) und (Lizenz: CC-BY-SA) ) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Systematikpfad: MATHEMATIK)

Es wurden 51 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Allgemeine Form und Scheitelform einer quadratischen Funktion

    Die Gleichung einer Parabel oder einer quadratischen Funktion kann man in verschiedenen Formen angeben.

    Details  
    { "DBS": "DE:DBS:56210" }

  • ln-Funktion (Mathematik)

    Die ln-Funktion (auch natürlicher Logarithmus) ist die Umkehrfunktion der e-Funktion.

    Details  
    { "DBS": "DE:DBS:55982" }

  • Ableitung (Mathematik)

    Die Ableitung einer Funktion f an einer Stelle x gibt die Steigung des Graphen der Funktion an dieser Stelle an.

    Details  
    { "DBS": "DE:DBS:56071" }

  • e-Funktion (Mathematik)

    Die e-Funktion ist die natürliche Exponentialfunktion mit der Basis e, der Eulerschen Zahl. Ihre Umkehrfunktion ist der natürliche Logarithmus.

    Details  
    { "DBS": "DE:DBS:55974" }

  • Stammfunktion finden (Mathematik)

    Eine Stammfunktion F einer ursprünglichen, stetigen Funktion f ist eine differenzierbare Funktion, deren Ableitung wieder die ursprüngliche Funktion f ist. Umgekehrt ergibt das unbestimmte Integral über eine Funktion f alle Stammfunktionen F.

    Details  
    { "DBS": "DE:DBS:55959" }

  • Kurvendiskussion (Mathematik)

    In der Kurvendiskussion werden ausgewählte Eigenschaften einer Funktion und ihres Graphen untersucht. Bestandteile der Kurvendiskussion Eigenschaften berechnen Diese Liste enthält alle Eigenschaften, die man bei einer Funktion überprüfen kann: Definitionsbereich (mit ...

    Details  
    { "DBS": "DE:DBS:55962" }

  • Hebbare Definitionslücke (Mathematik)

    (Stetig) hebbare oder behebbare Definitionslücken können bei gebrochen-rationalen Funktionen vorkommen.

    Details  
    { "DBS": "DE:DBS:55938" }

  • Differenzierbarkeit (Mathematik)

    Differenzierbarkeit ist eine Eigenschaft von Funktionen, die darüber Auskunft gibt ob und wo sich eine Funktion ableiten lässt. Eine Funktion f heißt differenzierbar an einer Stelle x_0 ihres Definitionsbereichs, falls der Differentialquotient existiert.

    Details  
    { "DBS": "DE:DBS:55999" }

  • Quadratische Funktion

    Eine quadratische Funktion ist ein Polynom zweiten Grades.

    Details  
    { "DBS": "DE:DBS:55984" }

  • Extrema berechnen

    Die normalen Extrema einer stetig differenzierbaren Funktion findet man an Nullstellen ihrer Ableitung (jedoch nicht unbedingt an allen!). Um die x-Werte der Hoch- und Tiefpunkte zu finden reicht es, die Nullstellen der 1. Ableitung zu finden und zu überprüfen, ob an diesen Stellen wirklich Extrema vorliegen.

    Details  
    { "DBS": "DE:DBS:56096" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite