Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: GEOMETRISCHE) und (Systematikpfad: MATHEMATIK) ) und (Quelle: "Bildungsmediathek NRW")

Es wurden 101 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 4 | T.01.02

    In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010287" }

  • Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 1 | T.01.02

    In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010284" }

  • Winkelsumme im Dreieck, Winkelsumme im Viereck | T.01.02

    In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010283" }

  • Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 2 | T.01.02

    In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010285" }

  • Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 3 | T.01.02

    In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010286" }

  • Die Hälfte färben

    Bei der Aufgabenstellung „Die Hälfte färben" werden am Zwanzigerfeld und an der Hundertertafel geometrische Muster gefärbt

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004608" }

  • Satz des Pythagoras und wie man richtig damit rechnet, Beispiel 2 | T.02.01

    Der Satz des Pythagoras (auch Hypothenusensatz)ist einer der bekanntesten Sätze der Mathematik. Die Aussage ist, dass das Quadrat der Hypotenuse gleich ist der Summe der Kathetenquadrate ist. (a²+b²=c²). Die Hypotenuse (=c) liegt dabei gegenüber des rechten Winkels. Die anderen beiden Seiten sind die Katheten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010313" }

  • Dreiecksfläche berechnen | A.18.08

    Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008974" }

  • Maximaler Umfang und minimaler Umfang berechnen, Beispiel 1 | A.21.04

    Der maximale Umfang (oder minimale Umfang) von Figuren ist nicht sehr häufig gefragt. Falls doch, berechnet man den Umfang (zählt die Längen aller Außenseiten zusammen) und berechnet davon das Minimum/Maximum.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009049" }

  • Dreiecksfläche berechnen, Beispiel 4 | A.18.08

    Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008978" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite