Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: PYRAMIDE) und (Schlagwörter: ABSTAND)

Es wurden 6 Einträge gefunden


Treffer:
1 bis 6
  • Inkugel einer Pyramide berechnen | V.09.06

    Eine Inkugel einer Pyramide ist eine Kugel, die alle Seitenflächen der Pyramide (von innen) berührt. Man stellt zuerst die Gerade auf, die von der Pyramidenspitze zum Mittelpunkt der Grundfläche geht. Diese Gerade schreibt man in Punktform um. Da der Kugelmittelpunkt (aus Symmetriegründen) auf dieser Gerade liegen muss, hat man bereits den Mittelpunkt (wir nennen ihn ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010658" }

  • Inkugel einer Pyramide berechnen, Beispiel 2 | V.09.06

    Eine Inkugel einer Pyramide ist eine Kugel, die alle Seitenflächen der Pyramide (von innen) berührt. Man stellt zuerst die Gerade auf, die von der Pyramidenspitze zum Mittelpunkt der Grundfläche geht. Diese Gerade schreibt man in Punktform um. Da der Kugelmittelpunkt (aus Symmetriegründen) auf dieser Gerade liegen muss, hat man bereits den Mittelpunkt (wir nennen ihn ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010660" }

  • Inkugel einer Pyramide berechnen, Beispiel 1 | V.09.06

    Eine Inkugel einer Pyramide ist eine Kugel, die alle Seitenflächen der Pyramide (von innen) berührt. Man stellt zuerst die Gerade auf, die von der Pyramidenspitze zum Mittelpunkt der Grundfläche geht. Diese Gerade schreibt man in Punktform um. Da der Kugelmittelpunkt (aus Symmetriegründen) auf dieser Gerade liegen muss, hat man bereits den Mittelpunkt (wir nennen ihn ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010659" }

  • Umkugel einer Pyramide berechnen, Beispiel 1 | V.09.05

    Eine Umkugel einer Pyramide ist eine Kugel, die durch alle Eckpunkte der Pyramide geht. Man stellt zuerst die Gerade auf, die von der Pyramidenspitze zum Mittelpunkt der Grundfläche geht. Diese Gerade schreibt man in Punktform um. Da der Kugelmittelpunkt (aus Symmetriegründen) auf dieser Gerade liegen muss, hat man bereits den Mittelpunkt (wir nennen ihn „M“) in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010656" }

  • Umkugel einer Pyramide berechnen, Beispiel 2 | V.09.05

    Eine Umkugel einer Pyramide ist eine Kugel, die durch alle Eckpunkte der Pyramide geht. Man stellt zuerst die Gerade auf, die von der Pyramidenspitze zum Mittelpunkt der Grundfläche geht. Diese Gerade schreibt man in Punktform um. Da der Kugelmittelpunkt (aus Symmetriegründen) auf dieser Gerade liegen muss, hat man bereits den Mittelpunkt (wir nennen ihn „M“) in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010657" }

  • Umkugel einer Pyramide berechnen | V.09.05

    Eine Umkugel einer Pyramide ist eine Kugel, die durch alle Eckpunkte der Pyramide geht. Man stellt zuerst die Gerade auf, die von der Pyramidenspitze zum Mittelpunkt der Grundfläche geht. Diese Gerade schreibt man in Punktform um. Da der Kugelmittelpunkt (aus Symmetriegründen) auf dieser Gerade liegen muss, hat man bereits den Mittelpunkt (wir nennen ihn „M“) in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010655" }

Vorschläge für alternative Suchbegriffe:

[ Mathematikunterricht [ Mathematik [ Geometrie [ Analytische Geometrie [ Stereometrie [ Raumgeometrie [ Volumen [ Schulphysik [ Physikunterricht [ Physik [ Naturwissenschaftlicher Unterricht [ Experiment [ Würfel [ Ägypten [ Körper [ Geschichte