Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: BESTAND)

Es wurden 135 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Digitales Bildarchiv des Bundesarchivs

    Das Bundesarchiv verwahrt ca. 11 Millionen Bilder, Luftbilder und Plakate zur deutschen Geschichte. Erste Fotografien stammen aus dem Jahr 1860. Schwerpunkte der Überlieferung sind Bilddokumente zu Ereignissen und Personen der Weimarer Republik (u.a. Bestand ʺBild 102 Aktuelle-Bilder-Centrale, Georg Pahlʺ) zum Dritten Reich, hier insbesondere die Bilder der ...

    Details  
    { "HE": "DE:HE:116612" }

  • Die lateinischen Infinitive

    Der Bestand der lateinischen Infinitive

    Details  
    { "LBS-BW": [] }

  • Die lateinischen Partizipien

    Der Bestand der lateinischen Partizipien

    Details  
    { "LBS-BW": [] }

  • Beschränktes Wachstum berechnen, Beispiel 1 | A.07.03

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008613" }

  • Beschränktes Wachstum berechnen, Beispiel 3 | A.07.03

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008615" }

  • Beschränktes Wachstum berechnen | A.07.03

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008612" }

  • Beschränktes Wachstum berechnen, Beispiel 4 | A.07.03

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008616" }

  • Beschränktes Wachstum berechnen, Beispiel 2 | A.07.03

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008614" }

  • Exponentielles Wachstum berechnen, Beispiel 3 | A.30.03

    Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009312" }

  • Exponentielles Wachstum berechnen, Beispiel 6 | A.30.03

    Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009315" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite