Ergebnis der Suche
Ergebnis der Suche nach: (Freitext: TETRAEDER)
Es wurden 14 Einträge gefunden
- Treffer:
- 1 bis 10
-
DynaGeo: Tetraeder mit Netz
Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00002901" }
-
Steinkohle. Entstehung, Gewinnung, Verwendung - Tetraeder in Bottrop
Details { "MELT": "DE:SODIS:MELT-04602170.15" }
-
DynaGeo: Tetraeder mit variablen Schnittflächen an den Ecken
Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00002902" }
-
Perlen und Formeln
Bei dieser Aufgabe geht es darum, den binomischen Satz von Newton und damit verbundene Konzepte (Kombinationen, Pascalsches Dreieck) nach dem Ansatz des forschenden Lernens zu vermitteln, indem man die Verbreitung eines Gerüchts modelliert.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00015244" }
-
Volumen dreiseitige Pyramide berechnen über Kreuzprodukt | V.07.04
Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt Spatprodukt. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010605" }
-
Volumen dreiseitige Pyramide berechnen, Beispiel 2 | V.07.03
Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das ist ein ziemliches Rumgerechne. Die Grundfläche berechnet sich über A=1/2*g*h. Die Grundlinie berechnet man über Abstand Punkt-Punkt. Die Höhe des Dreiecks berechnet man über Abstand Punkt-Gerade. Die Höhe der Pyramide berechnet man über ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010603" }
-
Volumen dreiseitige Pyramide berechnen über Kreuzprodukt, Beispiel 2 | V.07.04
Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt Spatprodukt. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010607" }
-
Faltgeometrie- Falten als Zugang zum Geometrieunterricht
Die Kunst des Papierfaltens ist nicht nur was für Origami-Anhänger! Durch diese entdeckende und konstruierende Arbeitsform lässt sich jeder Mathematik- und Geometrieunterricht im Nu lebendig gestalten. Auf der schweizerischen Website www.faltgeometrie.ch wird es uns vorgemacht.Die so oft als abstrakt empfundene Materie wird den Lernenden praxisnah und spielerisch ...
Details { "HE": "DE:HE:329666" }
-
Volumen dreiseitige Pyramide berechnen über Kreuzprodukt, Beispiel 1 | V.07.04
Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt Spatprodukt. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010606" }
-
Volumen dreiseitige Pyramide berechnen, Beispiel 3 | V.07.03
Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das ist ein ziemliches Rumgerechne. Die Grundfläche berechnet sich über A=1/2*g*h. Die Grundlinie berechnet man über Abstand Punkt-Punkt. Die Höhe des Dreiecks berechnet man über Abstand Punkt-Gerade. Die Höhe der Pyramide berechnet man über ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010604" }