Ergebnis der Suche (11)

Ergebnis der Suche nach: ( (Freitext: PHYSIK) und (Schlagwörter: MECHANIK) ) und (Systematikpfad: MECHANIK)

Es wurden 144 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
101 bis 110
  • Wurf nach unten Modellbildung

    Aufgabe Bestätige mit Hilfe einer Simulation des Wurfs nach unten die Gültigkeit der Formel t_ rm F = frac - v_ y0 + sqrt v_ y0 ^2 + 2 cdot g cdot y_0 g für y_0=10 , 0 , rm

    Details  
    { "LEIFI": "DE:LEIFI:8700" }

  • Periodische Bewegungen und Schwingungen

    Schwingungen: besondere periodische Bewegungen Joachim Herz Stiftung Abb. 2 Ruhelage von verschiedenen Anordnungen, die eine Schwingung durchführen könnenDie erste periodische Bewegung in Abb. 1 unterscheidet sich von den anderen fünf in einem

    Details  
    { "LEIFI": "DE:LEIFI:7551" }

  • Betrag der Zentripetalbeschleunigung mit Winkelgeschwindigkeit Simulation mit Versuchsanleitung

    Ergebnis Ein Körper bewegt sich mit der Winkelgeschwindigkeit omega gleichförmig auf einer Kreisbahn mit dem Radius r . Dann ist der Betrag a_ rm ZP der Zentripetalbeschleunigung, die der Körper während der Kreisbewegung

    Details  
    { "LEIFI": "DE:LEIFI:13709" }

  • Schwingende Boje

    Bewegung einer schwingenden Boje Bei geeignet gewähltem Koordinatensystem vgl. Animation in Abb. 1 und den Anfangsbedingungen y 0 = y_0 und v 0 = dot y 0 = 0 wird die Bewegung einer schwingenden Boje mit der Dichte rho_ rm B und der Länge

    Details  
    { "LEIFI": "DE:LEIFI:8978" }

  • Federpendel gedämpft

    Aufstellen der Bewegungsgleichung Im Folgenden werden wir die Bewegung des gedämpften Federpendels mathematisch auf Basis des 2. Axioms von NEWTON Aufstellen und dann Lösen der Gleichung  F=m cdot a Leftrightarrow a = frac F m ; * beschreiben. 1. Einführen eines

    Details  
    { "LEIFI": "DE:LEIFI:7496" }

  • Federschwingung mit Ultraschallsensor

    Beobachtung und Auswertung Joachim Herz Stiftung Abb. 4 Zeit-Kraft-Diagramm beim FederpendelEs ergeben sich die in Abb. 4 gezeigten Diagramme. Ein Glättung der Messwerte ist hier nicht erforderlich und die

    Details  
    { "LEIFI": "DE:LEIFI:17557" }

  • Strömungswiderstand und c_ rm w -Wert

    Berechnung der Strömungsleistung Um eine Anströmung dauerhaft gegen einen Strömungswiderstand aufrecht zu erhalten muss Leistung erbracht werden. Diese sogenannte Strömungsleistung P_ rm w berechnet sich über [P_ rm w = F_ rm w cdot v = frac 1 2 cdot c_ rm w cdot

    Details  
    { "LEIFI": "DE:LEIFI:10154" }

  • Doppeltes Federpendel

    Bewegung des doppelten Federpendels Bei geeignet gewähltem Koordinatensystem vgl. Animation in Abb. 1 und den Anfangsbedingungen x 0 = x_0 und v 0 = dot x 0 = 0 wird die Bewegung eines doppelten Federpendels mit einem Pendelkörper der Masse m und

    Details  
    { "LEIFI": "DE:LEIFI:9225" }

  • Stehende Wellen - Typen

    Stehende Wellen mit einem festen und einem losen Ende Auf Wellenträgern wie z.B. an einem Ende befestigten Stäben können sich bei passenden Anregungsfrequenzen f_1 , f_2 , f_3 , ... stehende Wellen mit einem festen und einem

    Details  
    { "LEIFI": "DE:LEIFI:14304" }

  • Wellrad

    Aufbau und Funktion Joachim Herz Stiftung Abb. 1 Aufbau und Größen eines Wellrads Ein Wellrad besteht aus zwei oder mehr verschieden großen "Rädern", die durch eine Achse, die sogenannte Welle, fest miteinander verbunden sind. Grundsätzlich

    Details  
    { "LEIFI": "DE:LEIFI:8950" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite