Ergebnis der Suche (4)

Ergebnis der Suche nach: (Freitext: VOLUMEN) und (Schlagwörter: VOLUMEN)

Es wurden 51 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite

Treffer:
31 bis 40
  • Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 5 | A.21.02

    Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009039" }

  • Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 4 | A.21.02

    Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009038" }

  • Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 2 | A.21.02

    Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009036" }

  • Anwendungsgebiete der Integralrechnung

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Auf den vorliegenden Seiten wird anschaulich gezeigt, in welchen Gebieten man Integralrechnung einsetzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004506" }

  • Lingo MINT: Einen Kuchen backen (Teil 1)

    Lingo MINT ist ein Medienpaket zum Erwerb von Deutsch als Fremdsprache im Kontext von MINT-Themen. Es umfasst alltagsnahe MINT-Inhalte mit vielen interaktiven Aufgaben. Lingo MINT eignet sich auch zum sachfachintegrierten Fremdsprachenlernen (CLIL).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00014526" }

  • Prisma - Oberflächeninhalt

    Der Kurzfilm befasst sich mit der Berechnung des Oberflächeninhalts des Prismas.

    Details  
    { "LO": "DE:LO:de.lehrer-online.wm_000612" }

  • Matheaufgaben aus der Arbeitswelt - Geschwindigkeit berechnen

    Die Arbeitsblätter sind für die Sekundarstufe I konzipiert. Zum Teil werden Grundlagen geübt, zum Teil müssen mehrere wichtige Formeln verknüpft werden – eine praxistypische Mischung verschiedener Berechnungen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00017647" }

  • Matheaufgaben aus der Arbeitswelt - Volumen und Masse berechnen

    Dieses Arbeitsblatt ist für die Sekundarstufen I konzipiert. Zum Teil werden Grundlagen geübt, zum Teil müssen mehrere wichtige Formeln verknüpft werden – eine praxistypische Mischung verschiedener Berechnungen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00017666" }

  • Matheaufgaben aus der Arbeitswelt - Dreisatz (Volumenberechnung)

    Die Arbeitsblätter sind für die Sekundarstufe I konzipiert. Zum Teil werden Grundlagen geübt, zum Teil müssen mehrere wichtige Formeln verknüpft werden – eine praxistypische Mischung verschiedener Berechnungen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00017655" }

  • Volumen Kegel und Volumen Zylinder berechnen, Beispiel 2 | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009053" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite