Ergebnis der Suche (57)

Ergebnis der Suche nach: (Freitext: GLEICHUNG)

Es wurden 878 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 51 52 53 54 55 56 57 58 59 60 61 62 Eine Seite vor Zur letzten Seite

Treffer:
561 bis 570
  • Lineare Ungleichungen, Beispiel 4 | A.26.01

    Eine lineare Ungleichung ist eine Ungleichung, in der nur „x“ vorkommt. Kein „x²“ oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich „Kleinerzeichen“ oder ein „Größerzeichen“. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein „x“ hat, kommt auf die linke Seite, alles ohne „x“ auf die rechte Seite. Teilt man durch etwas ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009177" }

  • Schaubilder von Funktionen | A.27

    Es gibt im Wesentlichen drei Typen von Fragen rund um Schaubilder von Funktionen in den vier Quadranten: 1.verschiedene Schaubilder und verschiedene Funktionsgleichungen sind gegeben und man muss jedes Schaubild den einzelnen Funktionen zuordnen. 2.nur ein Schaubild ist gegeben und man muss die Funktionsgleichung finden, die dazu passt. (Manchmal ist auch eine Funktion in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009198" }

  • Einfache trigonometrische Gleichungen lösen, Beispiel 1 | A.42.02

    Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in „Ding“ sollte ein „x“ drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach „Ding“ auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009457" }

  • Inkugel einer Pyramide berechnen, Beispiel 2 | V.09.06

    Eine Inkugel einer Pyramide ist eine Kugel, die alle Seitenflächen der Pyramide (von innen) berührt. Man stellt zuerst die Gerade auf, die von der Pyramidenspitze zum Mittelpunkt der Grundfläche geht. Diese Gerade schreibt man in Punktform um. Da der Kugelmittelpunkt (aus Symmetriegründen) auf dieser Gerade liegen muss, hat man bereits den Mittelpunkt (wir nennen ihn ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010660" }

  • Schaubilder von Funktionen: Kreisfunktion, Ellipsenfunktion | A.27.01

    Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009206" }

  • Winkel und Anstiegswinkel von Geraden berechnen | A.02.15

    Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet „m=tan(alpha)“. Hierbei ist „m“ die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008415" }

  • Mit der Funktionsgleichung f(x) den y-Wert berechnen, Beispiel 2 | A.11.01

    Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur „Wert der Funktion“ in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008625" }

  • Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 2 | A.53.05

    Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die „spezielle Lösung“ oder „partikuläre Lösung“ zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009718" }

  • Schaubild einer trigonometrischen Funktion erstellen, Beispiel 2 | A.42.09

    Man beginnt mit der Mittellinie d und der Amplitude a. Mit deren Hilfe weiß man nun in welchem Bereich sich die Funktion bewegt (wie weit die Funktion hoch und wie weit sie runter geht). Es geht weiter mit c, womit man weiß, wo die Funktion „beginnt“. Als Letztes bestimmt man die Periode mit Hilfe von b. Nun kann man Hoch- und Tief- und die Wendepunkte bestimmen und damit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009490" }

  • Ungleichungen mit Brüchen, Beispiel 1 | A.26.04

    Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009195" }

Seite:
Zur ersten Seite Eine Seite zurück 51 52 53 54 55 56 57 58 59 60 61 62 Eine Seite vor Zur letzten Seite