Ergebnis der Suche (57)

Ergebnis der Suche nach: (Freitext: GLEICHUNG)

Es wurden 882 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 51 52 53 54 55 56 57 58 59 60 61 62 Eine Seite vor Zur letzten Seite

Treffer:
561 bis 570
  • Schaubilder von Funktionen: ganzrationale Funktion | A.27.01

    Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009200" }

  • Nullstellen von ganzrationalen Funktionen berechnen über Horner-Schema, Beispiel 3 | A.46.02

    Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur das Horner-Schema als Notlösung übrig (oder die Polynomdivision, welche eine andere Variante des Horner-Schemas ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009626" }

  • Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 3 | A.11.02

    Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008630" }

  • So löst man eine Differentialgleichung DGL, Beispiel 3 | A.53.01

    Eine relativ einfache Möglichkeit, eine DGL zu lösen, ist folgende: Die DGL ist gegeben, sowie die Funktion (quasi die Lösung). Die Funktion ist jedoch in Abhängigkeit von Parametern gegeben. Das Ziel ist nun, die Parameter zu bestimmen, um die Funktion vollständig zu kennen. Man erreicht das, indem man die gegebene Funktion (mitsamt Parametern) ableitet und dann sowohl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009701" }

  • Rechnen können mit GTR / CAS - Abituraufgabe 4a | A.29.05

    Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Haben Sie versucht ein Ei mit den Augen eines Mathematikers zu sehen? Vermutlich ist diese Aufgabe also Ihr „erstes Mal“. Man nimmt eine Ellipse, betrachtet deren Rotation um die x-Achse und erhält ein Ei. Die Gleichung der benötigten Ellipse erhalten wir über eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009296" }

  • Mit der Funktionsgleichung f(x) den y-Wert berechnen, Beispiel 1 | A.11.01

    Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur „Wert der Funktion“ in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008624" }

  • Quadratische Ergänzung zur Lösung quadratischer Gleichungen, Beispiel 2 | G.04.06

    Abgesehen von der a-b-c-Formel oder p-q-Formel kann man quadratische Gleichungen auch über „quadratische Ergänzung“ lösen. Die meisten Leute finden die quadratische Ergänzung eher „unschön“, jedoch handelt es sich immer um den gleichen Lösungsweg (auch wenn er etwas länger dauert). Mathematisch gesehen ist die quadratische Ergänzung der eigentliche Lösungsweg von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010092" }

  • Moivre-Laplace Näherungsformel, Beispiel 3 | W.18.03

    Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010828" }

  • Kubische Funktion, kubische Parabel ableiten, Beispiel 1 | A.05.02

    Die Ableitung von (kubischen) Funktionen braucht man hauptsächlich um Extrempunkte und Tangenten zu berechnen. Setzt man die Ableitung Null und löst nach „x“ auf, erhält man die Hoch- und Tiefpunkte. Setzt man irgendeinen x-Wert in die Ableitung ein, so erhält man die Tangentensteigung. Wie leitet man überhaupt ab? Die Hochzahl von „x“ kommt vor, die neue Hochzahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008555" }

  • Lineare Ungleichungen, Beispiel 2 | A.26.01

    Eine lineare Ungleichung ist eine Ungleichung, in der nur „x“ vorkommt. Kein „x²“ oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich „Kleinerzeichen“ oder ein „Größerzeichen“. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein „x“ hat, kommt auf die linke Seite, alles ohne „x“ auf die rechte Seite. Teilt man durch etwas ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009175" }

Seite:
Zur ersten Seite Eine Seite zurück 51 52 53 54 55 56 57 58 59 60 61 62 Eine Seite vor Zur letzten Seite