Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: D-NORDRHEIN-WESTFALEN) und (Systematikpfad: MATHEMATIK) ) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 72 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Anlage zum Abschlussbericht des BLK-Modellversuchsprogramms "Steigerung der Effizienz des mathematischnaturwissenschaftlichen Unterrichts”, Koordinatorenberichte aus den Schulsets

    Dieses Dokument ist eine Anlage zum Abschlussbericht zum “BLK- Modellversuchsprogramm `Steigerung der Effizienz des mathematisch- naturwissenschaftlichen Unterrichts ( SINUS)`. SINUS wurde 1998 vornehmlich als Reaktion auf die TIMS-Studie eingerichtet. Anders als bei früheren Modellversuchen ging es bei SINUS nicht um die Erprobung und anschließende Implementation neuer ...

    Details  
    { "DBS": "DE:DBS:39797" }

  • "Steigerung der Effizienz des mathematisch-naturwissenschaftlichen Unterrichts" . Abschlussbericht des BLK-Modellversuchsprogramms.

    Die Publikation (85 S.) berichtet über den Stand des “BLK- Modellversuchsprogramms `Steigerung der Effizienz des mathematisch- naturwissenschaftlichen Unterrichts ( SINUS)`. SINUS wurde 1998 vornehmlich als Reaktion auf die TIMS-Studie eingerichtet. Anders als bei früheren Modellversuchen ging es bei SINUS nicht um die Erprobung und anschließende Implementation neuer ...

    Details  
    { "DBS": "DE:DBS:21482" }

  • "Materialien zur Weiterentwicklung des Mathematikunterrichts in der Primarstufe." Das Projekt PIKAS

    In dem Projekt PIKAS werden Materialien zur Weiterentwicklung des Mathematikunterrichts in der Primarstufe erarbeitet, die Lehrer*innen, Mathe-Expert*innen, Schulleitungen, Fachleiter*innen u.a. dabei unterstützen, einen Unterricht zu entwickeln, der den Maßstäben der KMK-Bildungsstandards und den Lehrplänen entspricht.

    Details  
    { "DBS": "DE:DBS:62237" }

  • Zentrale Lernstandserhebungen in der Jahrgangsstufe 8

    Lernstandserhebungen sind eine wichtige Grundlage für eine systematische Schul- und Unterrichtsentwicklung. Als systematisches Diagnoseverfahren liefern sie in diesem Rahmen wertvolle Hinweise zu den Stärken und zum Förderbedarf von Kursen bzw. Lerngruppen in jährlich ausgewählten Lernbereichen der Fächer Deutsch, Mathematik und Englisch bzw. Französisch. Hierfür wird ...

    Details  
    { "DBS": "DE:DBS:44117", "LEARNLINE": "DE:SODIS:LEARNLINE-00000604" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009485" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d, Beispiel 2 | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009487" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d, Beispiel 1 | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009486" }

  • Funktionen strecken: so wird’s gemacht, Beispiel 3 | A.23.02

    Wie kann man eine Funktion strecken? Man kann sie um den Faktor „c“ in y-Richtung strecken, indem man die Funktion mit dieser Zahl „c“ multipliziert. (Aus „f(x)“ wird „c*f(x)“). Man streckt eine Funktion um den Faktor „d“ in x-Richtung, indem man jeden Buchstaben „x“ der Funktion durch „x/d“ ersetzt. (Aus „x“ wird „x/d“). Bemerkung: Ist ein Streckfaktor ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009107" }

  • Funktionen strecken: so wird’s gemacht, Beispiel 4 | A.23.02

    Wie kann man eine Funktion strecken? Man kann sie um den Faktor „c“ in y-Richtung strecken, indem man die Funktion mit dieser Zahl „c“ multipliziert. (Aus „f(x)“ wird „c*f(x)“). Man streckt eine Funktion um den Faktor „d“ in x-Richtung, indem man jeden Buchstaben „x“ der Funktion durch „x/d“ ersetzt. (Aus „x“ wird „x/d“). Bemerkung: Ist ein Streckfaktor ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009108" }

  • Funktionen strecken: so wird’s gemacht | A.23.02

    Wie kann man eine Funktion strecken? Man kann sie um den Faktor „c“ in y-Richtung strecken, indem man die Funktion mit dieser Zahl „c“ multipliziert. (Aus „f(x)“ wird „c*f(x)“). Man streckt eine Funktion um den Faktor „d“ in x-Richtung, indem man jeden Buchstaben „x“ der Funktion durch „x/d“ ersetzt. (Aus „x“ wird „x/d“). Bemerkung: Ist ein Streckfaktor ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009104" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite