Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: GLEICHUNG) und (Schlagwörter: ANALYSIS) ) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 50 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Nullstellen von quadratischen Funktionen entdecken

    Die Lösungen einer quadratischen Gleichung müssen sich laut Theorie ja mit Zirkel und Lineal konstruieren lassen. Aber wie geht das? Eine andere interessante Frage lautet: Wie kann man die komplexen Lösungen einer quadratischen Gleichung sichtbar machen? Der Blick über den reellen Tellerrand schafft dabei eine neue Sicht auf die Lösungen von ...

    Details  
    { "LO": "DE:LO:de.lehrer-online.un_1000483" }

  • Gleichung dritten Grades; Nullstellen kubische Parabel berechnen, Beispiel 3 | A.05.01

    Nullstellen einer kubischen Parabel (Gleichung dritten Grades) kann man eigentlich nur berechnen, in dem man „x“ (oder evtl. „x²) ausklammert und den Satz vom Nullprodukt (SvN) anwendet. Danach ist höchstwahrscheinlich p-q-Formel bzw. a-b-c-Formel angesagt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008553" }

  • Gleichung dritten Grades; Nullstellen kubische Parabel berechnen, Beispiel 2 | A.05.01

    Nullstellen einer kubischen Parabel (Gleichung dritten Grades) kann man eigentlich nur berechnen, in dem man „x“ (oder evtl. „x²) ausklammert und den Satz vom Nullprodukt (SvN) anwendet. Danach ist höchstwahrscheinlich p-q-Formel bzw. a-b-c-Formel angesagt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008552" }

  • Gleichung dritten Grades; Nullstellen kubische Parabel berechnen, Beispiel 1 A.05.01

    Nullstellen einer kubischen Parabel (Gleichung dritten Grades) kann man eigentlich nur berechnen, in dem man „x“ (oder evtl. „x²) ausklammert und den Satz vom Nullprodukt (SvN) anwendet. Danach ist höchstwahrscheinlich p-q-Formel bzw. a-b-c-Formel angesagt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008551" }

  • Differentialgleichung: Was ist eine DGL und wie rechnet man damit? | A.53

    Eine Differenzialgleichung (andere Schreibweise: Differentialgleichung) (kurz: DGL) ist eine Gleichung in welcher Ableitung und Funktion auftauchen. Eine DGL beschreibt daher einen Zusammenhang zwischen der Änderung des Bestands und dem Bestand selber. Der Schwierigkeitsgrad beginnt „relativ einfach“ (?Kap.4.3.1). Dann geht’s recht schnell mit dem Niveau aufwärts. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009697" }

  • Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 4 | A.24.01

    Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibt’s eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009137" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 1 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009703" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009702" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 2 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009704" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 4 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009706" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite