Ergebnis der Suche

Ergebnis der Suche nach: ( ( (Freitext: M-LEARNING) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Bildungsebene: "SEKUNDARSTUFE I") ) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 358 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Affine Abbildung; Eigenvektor | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010269" }

  • Affine Abbildung; Eigenvektor, Beispiel 4 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010273" }

  • Affine Abbildung; Eigenvektor, Beispiel 5 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010274" }

  • Affine Abbildung; Eigenvektor, Beispiel 1 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010270" }

  • Affine Abbildung; Eigenvektor, Beispiel 3 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010272" }

  • Affine Abbildung; Eigenvektor, Beispiel 6 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010275" }

  • Affine Abbildung; Eigenvektor, Beispiel 2 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010271" }

  • "Lernen in Zeiten von Corona". Die Initiative "Wir bleiben schlau! Die Allianz für MINT-Bildung zu Hause"

    Seit Mitte März sind die Schulen wegen des Coronavirus in allen Bundesländern geschlossen. Lehrkräfte versorgen die Schülerinnen und Schüler übers Internet mit Aufgaben, damit sie auch in der unterrichtsfreien Zeit nicht unbeschult bleiben. Das Bildungsministerium (BMBF) hat gemeinsam mit vielen Partnern die hier vorgestellte "Allianz für MINT-Bildung zu ...

    Details  
    { "DBS": "DE:DBS:61675" }

  • Inkugel einer Pyramide berechnen, Beispiel 1 | V.09.06

    Eine Inkugel einer Pyramide ist eine Kugel, die alle Seitenflächen der Pyramide (von innen) berührt. Man stellt zuerst die Gerade auf, die von der Pyramidenspitze zum Mittelpunkt der Grundfläche geht. Diese Gerade schreibt man in Punktform um. Da der Kugelmittelpunkt (aus Symmetriegründen) auf dieser Gerade liegen muss, hat man bereits den Mittelpunkt (wir nennen ihn ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010659" }

  • Inkugel einer Pyramide berechnen, Beispiel 2 | V.09.06

    Eine Inkugel einer Pyramide ist eine Kugel, die alle Seitenflächen der Pyramide (von innen) berührt. Man stellt zuerst die Gerade auf, die von der Pyramidenspitze zum Mittelpunkt der Grundfläche geht. Diese Gerade schreibt man in Punktform um. Da der Kugelmittelpunkt (aus Symmetriegründen) auf dieser Gerade liegen muss, hat man bereits den Mittelpunkt (wir nennen ihn ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010660" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite